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ABSTRACT  

Background: Medical image processing has a strong footprint in radio diagnosis for the 

detection of diseases from the images. Several computer-aided systems were researched 

in the recent past to assist the radiologist in diagnosing liver diseases and reducing the 

interpretation time. The aim of this paper is to provide an overview of the state-of-the-art 

techniques in computer-assisted diagnosis systems to predict the benign and malignant 

lesions using computed tomography images. 

Methods: The research articles published between 1998 and 2020 obtained from various 

standard databases were considered for preparing the review. The research papers include 

both conventional as well as deep learning-based systems for liver lesion diagnosis. The 

paper initially discusses the various hepatic lesions that are identifiable on computed 

tomography images, then the computer-aided diagnosis systems and their workflow. The 

conventional and deep learning-based systems are presented in stages wherein the various 

methods used for preprocessing, liver and lesion segmentation, radiological feature 

extraction and classification are discussed.  

Conclusion: The review suggests the scope for future work as efficient and effective 

segmentation methods that work well with diverse images have not been developed. 
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Furthermore, unsupervised and semi-supervised deep learning models were not 

investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored 

include image fusion and inclusion of essential clinical features along with the radiological 

features for better classification accuracy. 
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ABSTRACT  

Background: Medical image processing has a strong footprint in radio diagnosis for 

the detection of diseases from the images. Several computer-aided systems were 

researched in the recent past to assist the radiologist in diagnosing liver diseases and 

reducing the interpretation time. The aim of this paper is to provide an overview of the 

state-of-the-art techniques in computer-assisted diagnosis systems to predict the 

benign and malignant lesions using computed tomography images. 

Methods: The research articles published between 1998 and 2020 obtained from 

various standard databases were considered for preparing the review. The research 

papers include both conventional as well as deep learning-based systems for liver 

lesion diagnosis. The paper initially discusses the various hepatic lesions that are 

identifiable on computed tomography images, then the computer-aided diagnosis 

systems and their workflow. The conventional and deep learning-based systems are 

presented in stages wherein the various methods used for preprocessing, liver and 

lesion segmentation, radiological feature extraction and classification are discussed.  
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Conclusion: The review suggests the scope for future work as efficient and effective 

segmentation methods that work well with diverse images have not been developed. 

Furthermore, unsupervised and semi-supervised deep learning models were not 

investigated for liver disease diagnosis in the reviewed papers. Other areas to be 

explored include image fusion and inclusion of essential clinical features along with the 

radiological features for better classification accuracy. 

Keywords 

Computer-aided detection/diagnosis, liver diseases, Hemangioma, Hepatocellular 

carcinoma, liver/lesion segmentation, feature extraction, classification, deep learning 

1. INTRODUCTION    

Liver diseases account for about 2 million deaths every year globally [1]. 

According to World Health Organization, liver cancer was the sixth most commonly 

diagnosed cancer and fourth leading cause of cancer death in 2018 [2]. The liver is 

one of the most common organs to develop metastases [3].  

Computed Tomography (CT) is the most widely used modality for diagnosing 

liver diseases [4–6]. To assist a radiologist in interpreting the CT images, several 

computer-based systems like Computer Aided Diagnosis (CADx), Computer-Aided 

Detection (CADe) and Content-Based Medical Image Retrieval (CBMIR) are proposed 

by researchers. The CADe systems only detect and mark the suspicious areas like 

lesions in an image, whereas the CADx systems not only mark suspicious areas but 

also report the likelihood that the detected lesion is of a specific type (for instance, 

malignant/benign) [7,8].  The CADx and CADe systems shall hereafter be referred 

commonly as Computer-Aided detection and Diagnosis (CAD) systems. The CAD 

systems reduce the workload of the radiologists by providing a fast and precise 

Jo
urn

al 
Pre-

pro
of



  

3 

 

diagnosis. Whereas the CBMIR systems offer decision support to radiologists by 

retrieving similar images from the medical database based on extracted radiological 

features [9]. The primary focus of this review is on the CAD systems; however, the 

feature extraction techniques employed in some of the CBMIR systems are also 

discussed.  

The CAD system development involves the integration of multiple disciplines 

like image processing, pattern recognition, artificial intelligence and medical imaging. 

The hepatic CAD pipeline consists of various stages namely preprocessing, 

segmentation, feature extraction and selection; and classification. It takes abdominal 

CT images as input and processes them to detect/diagnose the liver lesion. In this 

review, the CAD systems are grouped into two categories: first conventional and 

second deep learning based. The two systems mainly differ with respect to the feature 

extraction stage. In the conventional CAD systems, the discriminatory features that 

characterize the liver/liver lesions are chosen by the CAD system developer. On the 

other hand, in the Deep Learning based CAD (DL-CAD) systems the pertinent features 

are automatically extracted by the DL algorithm. For each of the two CAD systems, the 

different methods employed in the various stages, are reported along with their merits 

and demerits. This approach of analysis is adopted as it helps in viewing the CAD 

systems from a broader perspective. Besides, the paper also includes some state-of-

the-art liver lesion segmentation methods as they can be incorporated in the CAD 

systems.   

In the reviewed CAD systems various Focal Liver Lesions (FLL) are 

categorized. They include Liver Cancers (LC) like Hepatocellular Carcinoma (HCC), 

Cholangiocarcinoma (CC) and Metastasis (MET) and benign liver lesions like 
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Hemangioma (HEM), Focal Nodular Hyperplasia (FNH), Hepatic Adenoma (HA), cysts 

and Abscess (ABS). A pictorial description of this categorization is shown in Fig. 1.  

Fig. 1. A pictorial description of the FLLs considered in the reviewed papers. 

A small minority of the reviewed papers have also considered Cirrhosis (CIRR). 

Since patients with CIRR are at a high risk of developing HCC [10]. The CT images 

indicating the discussed liver anomalies are shown in Fig. 2, the terms portal venous 

and arterial mentioned here are discussed in the next section. Hereafter, the terms 

FLL, hepatic/liver lesion and lesion will be used interchangeably.  

Fig. 2. Abdominal CT images indicating the liver anomalies along with the phase [11] (arrows were not shown 

in original images. For sake of explanation we have included them). 

In the majority of the literature, the researchers have attempted to identify the 

types of FLL. Others have either tried to differentiate between Benign (B) and 

Malignant (M) lesions in general without considering the subtypes or classified the liver 

as Normal (N) or Abnormal (ABN). A broader insight into the various categories 

considered for classification in the reviewed CAD systems is provided in Table 1.  

Table 1. Categories considered for classification in the reviewed CAD systems. 

The remaining part of the paper is structured into the following sections: Section 

2 briefly discusses the visualization of the common liver lesions in various CT phases. 

Section 3 describes the general architecture of the reviewed CAD systems. Further, 

the various methods adopted in the conventional CAD systems for image 

preprocessing, segmentation; feature extraction and selection; classification and the 

various evaluation measures are also elaborated. In Section 4, the DL based hepatic 

lesion segmentation techniques and CAD systems are reviewed. Section 5 discusses 

the limitations and highlights the areas for future research and Section 6 concludes the 
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review.  

2. CT phases and liver lesions 

In clinical practice, liver abnormalities, especially liver lesions, are diagnosed by 

observing and comparing their enhancement patterns in Non-Enhanced CT (NECT) 

and various Contrast-Enhanced CT (CECT) images. The former refers to the CT 

images acquired before the injection of an iodinated intravenous contrast agent, 

whereas the latter comprises two phases, namely Arterial (ART) and Portal Venous 

(PV), acquired typically 20-30s and 60-80s post-injection, respectively [53]. Also, there 

are other phases like Delayed (DLY) and Equilibrium (EQ) that are used for diagnosis 

by radiologists. In NECT images, the lesions are less conspicuous due to the inherent 

low contrast between most lesion tissues and surrounding liver parenchyma making it 

essential to acquire CECT images [54]. The visualization of the common FLLs in 

different CT phases (on axial slices) is shown in Fig. 3 and the typical radiographic 

features used for differentiating these lesions are summarized in Table 2. 

Fig. 3. Visualization of common liver lesions (on axial CT) in NECT, ART, PV and DLY phases (adapted from [55]).    

Table 2. Typical radiographic features of common liver lesions from other studies.  

Some of the papers reviewed in this article have considered only NECT 

images, while the others have worked with some or all of the CECT phases. The 

details regarding the same are reported in Table 3. However, some researchers have 

not provided information about the type of CT images used in their work.  

Table 3. Summary of the CT phases employed in the reviewed papers. 

Although the CECT images contain more details than NECT images, a few 

authors have preferred the latter. The iodinated contrast agent causes renal toxicity 

and allergic reactions in some patients and are unsuitable for patients with diabetes 
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and kidney disorders [14,15,42]. However, such systems have a higher probability of 

missing lesions that do not show up in these images [15]. In [42], an innovative image 

enhancement method based on fuzzy histogram equalization, contourlet domain and 

decorrelation stretching was proposed to facilitate the accurate diagnosis of lesions. 

3. CAD workflow 

A conventional CAD system typically comprises five stages, namely (1) 

Preprocessing (2) Segmentation (3) Feature Extraction (4) Feature Selection and (5) 

Classification, as shown in Fig. 4. These stages are implemented using various image 

processing, pattern recognition and Machine Learning (ML) techniques. 

Fig. 4. Block diagram of a conventional CAD system comprising of preprocessing, liver and lesion 

segmentation, feature extraction, feature selection and classification stages. 

The conventional CAD systems reviewed in this article, have adopted different 

versions of the five-stage pipeline mentioned above. The pipeline followed in some of 

the CAD systems [10,12,22,24,25,29,33,39,46] along with the common techniques 

employed is summarized pictorially in Fig. 5. A brief description of the same 

emphasizing the workflow is given below.  

The CAD systems use either CECT (single/multiple phase(s)) or NECT images 

of the abdomen as discussed in Section 2. Although preprocessing is an important 

stage, some authors skip this stage and perform segmentation directly on the input 

images; and report good results. In most of the work, segmentation was performed in 

two stages (liver followed by lesion segmentation) as will be detailed in Section 3.2; 

nevertheless, there are exceptions. Some authors prefer to perform segmentation only 

once either to delineate liver or lesion. Subsequently, relevant features are extracted 

from the segmented image. The next stage, namely feature selection is opted by a few 
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authors, others directly proceed with classification after feature extraction. Each of 

these stages are discussed in detail in the subsequent subsections. 

More recently, the advent of DL technology has brought about major changes in 

CAD system development. These changes mainly pertain to the feature extraction 

stage. In the reviewed DL-CAD systems, one or more of the stages namely, 

segmentation, feature extraction and classification were implemented through DL 

algorithms. The DL-CAD systems are discussed in Section 4.2, while the conventional 

CAD systems are elaborated in the following subsections. 

Fig. 5. A pictorial overview showing the workflow adopted and prominent techniques used in the reviewed 

conventional CAD systems. 

3.1 Preprocessing 

The main purpose of preprocessing is to augment the quality of the acquired 

CT images to achieve accurate outcomes in subsequent stages. Image noise (mottle), 

contrast and spatial resolution are the principal factors that define image quality. The 

main reasons for image noise are beam hardening, streak artifacts and motion artifacts 

[64]. In the reviewed literature, the major focus was on noise alleviation and contrast 

enhancement. The liver mostly shares weak boundaries with adjacent abdominal 

structures and the lesions usually have vague edges. Hence it is imperative that the 

filters employed for noise suppression are edge-preserving as well. Since median filter 

is a simple filter that satisfies this requirement it was used in [16,29,30,65,66] for noise 

mitigation. In [12], a detail preserving median-type filter elaborated in [67] and an 

anisotropic diffusion filter were used. The various denoising methods suitable for CT 

images are discussed in [68].  

Among the contrast enhancement approaches, simple histogram equalization 
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was used in [14,15,65]. In [42], an innovative method was presented to accentuate the 

contrast of the NECT image in two stages using the non-sub-sampled contourlet 

transform domain. In the first stage, fuzzy histogram equalization was performed and 

in the second stage, decorrelation stretching allotted separate colors to different 

tissues to facilitate delineation. A computationally efficient cross-modality technique 

based on 2D histogram specification employing CT and magnetic resonance images 

was proposed in [69], while mean shift method was used in [70].  Several transform 

based contrast enhancement methods employing morphological top hat transform [71], 

wavelet transform [72] and contourlet transform [73] were investigated by researchers. 

Their applicability to the present context can be explored.   

The authors of [46,66], eliminated the non-hepatic regions from the CT image 

based on prior knowledge of the anatomy to speed up segmentation. The authors of 

[16] relied on resizing the image for achieving the same.   

3.2  Segmentation  

Segmentation delineates the desired anatomical or pathological regions from 

the image and is a crucial stage, as imprecise segmentation can eventually lead to 

misdiagnosis. Semi or fully automated or completely manual segmentation approaches 

were adopted in the reviewed literature. In manual segmentation, the radiologist 

contours the lesions, but it largely varies due to inter and intra operator variability and 

is a time-intensive task [74]. However, a large part of the published literature has relied 

on manual contouring. This scenario may be attributed to the difficulties associated 

with hepatic lesion delineation, which include heterogeneous densities and weak 

boundaries [75]. Also, the intensities of the liver lesions are very close to that of other 

non-hepatic structures in the abdomen [22]. To handle this issue, in the rest of the 
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literature, segmentation was done hierarchically (first liver, then lesion) using 

automatic or interactive methods. It comprises a two-step strategy, wherein the liver 

was first delineated from the abdomen, followed by lesion segmentation from the 

segmented liver. Some researchers have only performed liver segmentation and 

skipped lesion delineation. However, liver segmentation is itself very challenging due 

to the closely related intensities between the liver and its adjacent organs, namely 

heart and stomach [74]. Furthermore, inter/intra patient variations in the liver structure, 

which worsens in a pathological liver, vague boundaries with adjoining structures and 

division of liver into two lobes in the final slices of a patient dataset also pose 

difficulties. Some of these issues associated with automatic liver segmentation are 

illustrated in Fig. 6.  

Fig. 6. CT images showing difficulties associated with liver segmentation (labels were not shown in the original 

images. For the sake of explanation we have included them) 

3.2.1 Liver segmentation techniques 

Researchers have investigated various segmentation algorithms for delineating 

the liver. In [22,66], first, thresholding was applied to discard the pixels external to the 

hepatic intensity range estimated from the histogram of the CT image. Then, 

morphological erosion was performed to eliminate the non-hepatic tissues of similar 

intensity that get segmented along with the liver. Finally, the confidence-connected 

region growing technique was applied by taking the centroid of the largest connected 

region as the seed point to extract the liver automatically. Nayak et al. [10] proposed 

an interactive region growing method that accepted seed point input from the user only 

for the first slice and computed the same intelligently for subsequent slices. A 

remarkable feature of their work was the automatic detection of segmentation error 
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and prompting the user to input seed points to rectify the same. Furthermore, their 

approach efficiently handled the issue of liver getting partitioned into two or more 

lobes. Although region growing is a simple and potent algorithm, it results in leakages 

when the regions to be delineated have weak boundaries. Hence they have to be 

preceded and succeeded by several image processing operations to get accurate 

results.  

Some authors have explored hybrid segmentation approaches that integrate 

multiple techniques to get better solutions. In the work by Chen et al. [24], Normalized 

Fractional Brownian (NFB) feature bit map and region growing were employed to 

obtain a rough estimate of the liver. Subsequently, a deformable contour model refined 

this output. A few researchers have explored the usefulness of neutrosophy in 

segmentation as they give good results in low contrast medical images with fuzzy 

boundaries [76]. The input image was transformed into the neutrosophic domain in [29] 

and [65]. While the former performed Fuzzy C-Means (FCM) thresholding on the 

transformed image to delineate the liver, the latter applied adaptive thresholding, 

morphological operations and watershed algorithm to achieve the same. Ranjbarzadeh 

et al. [70], used the Kirsch filter for edge detection. This was followed by the 

identification of the concave and convex points of the structures adjacent to the liver. 

Then the mean-shift algorithm was used for selectively enhancing the borders. The 

close concave points were subsequently linked to detach the liver from the adjacent 

organs and FCM clustering was applied to extract the liver contour. The high 

computational cost demanded by the hybrid methods needs to be reduced to render 

them suitable for practical applications. 

In [13,30,38,46], the histogram of the input image was analyzed to find the 
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approximate intensity range of the liver region. This was followed by thresholding to 

retain only those pixels that lie within the range. Morphological opening and closing 

operations were then performed to remove the unwanted structures attached to the 

liver. As indicated earlier, this approach was used in [66] as a preliminary step before 

the actual segmentation. Although it is a simple and computationally inexpensive 

method, it may not produce precise contours when there are large peripheral lesions in 

the liver. An attempt was made in [32] to address this issue. 

FCM was used in [77], where the abdominal CT image was partitioned into 

three clusters, namely liver, lesion and background. In [39], marker controlled 

watershed algorithm was applied to extract the liver effectively. This method resolves 

the over-segmentation issue commonly encountered in traditional watershed 

segmentation. Most of the aforementioned segmentation methods were coupled with 

morphological operations to refine the segmentation results.  

3.2.2 Lesion segmentation techniques 

Most of the authors preferred to manually delineate the lesions [14,15,48,51, 

78,26,28,33–35,40,42,43]. FCM with three clusters corresponding to liver, lesion and 

background was used in [13,16,18,22,30,38,65,70,79] and was the next most popular 

method. In [18], region growing was performed post FCM segmentation with seed 

point taken automatically from the lesion cluster to further improve the results. The 

work in [77] also adopted region growing in a similar way.  

Chang et al. [12] applied semiautomatic confidence connected region growing 

to extract the lesion volume directly from the abdominal CT images.  In [69], a 

computationally efficient lesion segmentation method inspired by gradient-based 

seeded region growing was used. In [32], the filling defects that occurred when the 
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liver was delineated using thresholding were considered as central lesions and an 

alpha shape type algorithm was used to detect the peripheral lesions. However, a 

shortcoming of their method was that it did not segment the large border lesions well. 

Nevertheless, it needs to be noted that their work was the only study among the 

reviewed literature that addressed the issue of liver contour refinement when 

peripheral lesions are present.  

Sun et al. [45] combined the Distance Regularized Level Set Evolution 

(DRLSE) method and region growing, while in [39], a Gaussian Mixture Model (GMM) 

was used. Level set methods were sparingly used for lesion delineation probably due 

to their high computation time. The work in [49] combined flood filling and iterative 

adaptive thresholding algorithms. In [61], a method was proposed that automatically 

detected hepatic lesions having distinct characteristics efficiently using intensity 

analysis and multilevel geometric features. While in [80], a generative model integrated 

with knowledge constraint was used, a framework that fused generative and 

discriminative models was developed in [81]. In [82], an object-based image analysis 

approach was adopted for detecting hypodense lesions. The success of any 

segmentation method depends on its robustness, accuracy and processing speed. 

However, it was observed that a vast majority of the researchers had used only one 

dataset and not divulged information regarding the accuracy and processing speed. 

Table 4 reports the prominent segmentation methods used for liver and/or lesion 

delineation in the reviewed literature. 

Table 4.  Summary of the liver and/or lesion segmentation methods used in the reviewed literature. 

Some of the pros and cons of the prominent segmentation algorithms are listed in 

Table 5. 
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Table 5.  Pros and cons of the prominent segmentation algorithms. 

3.3 Feature extraction and selection  

Feature extraction is the computation of the most relevant descriptors from the 

segmented image such that the intraclass variance is minimized and the interclass 

variation is enhanced to facilitate accurate classification [83].  Liver lesions are 

principally characterized by texture descriptors using statistical approaches. Gray 

Level Co-occurrence Matrix (GLCM), which studies the correlation between pairs of 

pixels with a certain spatial relationship were extensively utilized to characterize 

hepatic lesions. Other texture extraction techniques investigated in the reviewed 

literature include Laws' Texture Energy Measures (LTEM), fractal and histogram based 

methods, Local Binary Pattern (LBP) and Gray Level Difference Matrix (GLDM). Some 

authors have extracted texture features from the multiscale representations of the 

segmented lesions. In [46], wavelet decomposition followed by GLCM feature 

extraction was done. Kumar et al. [22] showed that Contourlet Coefficient texture 

features were more effective in discriminating the benign and malignant lesions than 

Wavelet Coefficient and gray level texture features. In [77], the difference between the 

features computed from the lesion and normal hepatic tissues were used to 

differentiate the lesions. The efficacy of Zernike and Legendre moments in 

representing the lesions were investigated in [28].  

Since radiologists identify the liver lesions by studying the visual patterns 

generated in the multiple phases of CT, it is essential that the feature vector includes 

details from different phases. In [43,84], texture features derived from different phases 

were combined to characterize the lesions. Roy et al. [55] presented a framework in 

which the lesion volume is divided into three partitions to capture the central, 
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intermediate and border characteristics of the lesion tissues in a time-efficient manner. 

The effective spatial and temporal features were then extracted from multiple phases. 

More recently, Nayak et al. [10] computed temporal features such as minimum signal 

intensity, peak signal intensity, time to peak, intensity difference between various 

phases and so on to assimilate the contrast enhancement pattern across multiple 

phases. In [45], time series features like relative signal intensity, signal enhancement 

ratio and so forth were computed for three phases along with histogram and GLCM 

features.  

Mid-level features based on Bag-Of-Visual-Words, are increasingly being 

researched in medical applications. They are adapted from the original Bag of Words 

model used for text analysis and represent images by histograms of image features, 

also called visual words. In [48], dictionaries corresponding to lesion margin and 

interior were created to characterize three types of hepatic lesions. Other studies that 

investigated this model are [85–87].  

Some authors [16,18,32,39,40,61,77] have also explored geometric and shape 

features. Among other techniques, multidimensional persistent homology was 

investigated in [78] for feature vector generation. Table 6 presents a summary of the 

common feature extraction methods explored in the reviewed articles.  

Table 6. Summary of the commonly used feature extraction techniques. 

Feature extraction is usually followed by feature selection wherein the 

ineffective extracted features are pruned; thereby reducing computational cost and 

improving classifier performance [88-90]. Genetic Algorithm (GA) [33–35] and Principal 

Component Analysis (PCA) [22,26,40,45] were prominently used for this purpose. 

Thomaz et al. [51] proposed a novel GA approach based on the Mahalanobis metric 
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for feature selection. Other methods used were forward selection and backward 

elimination algorithms. 

3.4 Classification and evaluation measures 

Classification is the final stage of a CAD system that performs the desired 

categorization by using the ML concepts. Various classifiers were investigated by the 

researchers to categorize the liver/liver lesions. Support Vector Machine (SVM), which 

performs classification by computing an optimal hyperplane with a maximum margin 

between two categories [40], was a significant classifier in the present context. SVM 

with Radial Basis Function (RBF) kernel was used in [16,26,78]. In [42], a multiclass 

SVM based on one-versus-one method was employed to classify lesions into six 

categories. Other works employing SVM include [14,25,29]. Artificial Neural Networks 

(ANN) that mimic the biological Neural Network (NN) of the brain were also employed 

in many CAD systems. Probabilistic Neural Network (PNN) classifier was used in 

[13,46].  Chen et al. [24] used its modified version for lesion classification. Multilayer 

Perceptron Neural Network (MLPNN) was adopted in [15].  

Apart from the classifiers mentioned above, an ensemble of classifiers that 

groups several weak learners to form a strong learner was employed in [18,34]. In [40], 

K-Nearest Neighbor (KNN), ANN, SVM and Random Forest (RF) classifiers were 

combined with the majority voting scheme for categorizing the lesions. Mougiakakou et 

al. [33] built an ensemble classifier using one MLPNN, one PNN, three distinct KNNs 

and a weighted voting scheme. Another approach employed was cascading two or 

more similar or dissimilar ML models to obtain the classifications in stages. Nayak et 

al. [10] used a Logistic Regression (LR) classifier to classify liver into normal/diseased, 

followed by SVM with RBF kernel for classifying diseased liver into CIRR/HCC. A 
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cascade of three SVMs was used in [45], while a similar approach with NNs was 

adopted in [35].  

Among the other classifiers, the Naïve Bayes (NB) classifier was investigated in 

[25,30], C4.5 decision tree classifier was used in [38] and Euclidean distance classifier 

was adopted in [28]. It was observed that SVM and ANN classifiers primarily 

performed binary classifications while the ensemble and cascaded classifiers were 

employed when lesions were to be categorized into three or more classes. 

K-fold Cross-Validation (CV) (10 folds in [14,15,25,38,43], 5 folds in [45,77] and 

3 folds in [39]) was the most commonly used validation and test technique. Its simpler 

version, leave one out method was applied in [12,18,32,48,78] and bootstrap method 

was used in [33]. The simple holdout approach was employed in [13,22,26,27]. The 

CV techniques generate a robust ML model at the cost of high computation time. On 

the other hand, the holdout approach performs fast processing and is preferred when 

the dataset is large in size. But such ML models are more likely to be sensitive to the 

training data. 

The key metrics used for evaluating the performance of the CAD system are 

accuracy, sensitivity, specificity, area under the receiver operating characteristic curve, 

positive predictive value and negative predictive value. A summary of the prominent 

feature extraction and ML techniques used in some of the CAD systems, along with 

their sample size and performance measures is given in Table 7. In the reviewed 

literature on conventional CAD systems, different datasets were used, to train and test 

the model. The researchers have relied on datasets from private hospitals, mainly due 

to the unavailability of a large scale database for liver diseases. As a result a fair 

comparison between the different CAD systems cannot be done.  
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Table 7. Overview of the CAD systems in terms of sample size, feature extraction & selection techniques, 

classification methods and performance. 

4. DL technology  

In recent years, DL algorithms are increasingly being researched and applied in 

the medical imaging domain for lesion segmentation, characterization and 

classification. This shift is largely attributed to the availability of powerful graphics 

processing units, big data and advances in DL algorithms. Another contributing factor 

is the automatic selection of relevant features in the DL based systems when 

compared to the conventional CAD systems where domain expertise is required for 

selecting the handcrafted features making it a challenging task [91–93].  

A large proportion of the hepatic DL-CAD systems were based on 

Convolutional Neural Networks (CNN). These networks typically comprise pairs of 

convolutional and pooling layers, followed by Fully Connected (FC) layers and, finally, 

a softmax layer to produce the desired classifications; however, variations are seen in 

the modern versions [94]. Some of the common CNN models are LeNet, AlexNet, 

VGGNet and Residual Neural Network (ResNet). In most of the reviewed literature, 

CNN and related networks were used for feature extraction and classification, whereas 

Fully Convolutional Networks (FCN) and their variants like UNet were adopted for 

liver/liver lesion segmentation. In a broader sense, FCN is a CNN with the FC layer 

replaced by deconvolutional (or transposed convolutional) layer to perform pixel wise 

classification. The DL based liver lesion segmentation methods and hepatic CAD 

systems are discussed in the following subsections.  

4.1 DL based segmentation 

UNet, a symmetrical encoder-decoder network with skip connections, 
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developed for biomedical image segmentation was used by many researchers. In [95], 

two UNet based models were cascaded to segment liver lesions from the abdominal 

CT images hierarchically. Then, a 3D Conditional Random Field was used for refining 

the lesions. Li et al. [96], formulated a hybrid framework by combining 2D and 3D 

UNets to efficiently segment liver lesions from CT volumes. The 2D densely connected 

UNet computed intra-slice features and its 3D counterpart merged the volumetric 

features hierarchically using the auto-context approach. These features were later 

jointly optimized using hybrid feature fusion layer. Their approach addressed the issue 

that 2D networks ignore the third dimension and that the 3D networks are 

computationally expensive. However, the efficacy of the algorithm in segmenting small 

liver lesions needs to be ascertained.  

Cheon et al. [97] proposed a DL approach based on UNet model that explored 

the usefulness of the CT attenuation value in differentiating lesions from normal 

tissues. The weighted dice loss function was used for training the model, which 

exhibited improved performance compared to conventional UNet.  

In [98], a DL model inspired by ResNet and UNet performed segmentation in 

two stages. While the first stage coarsely delineated the liver region, the second stage 

performed both liver and lesion segmentation. The former stage extracted the 

multiscale features from the input image while the latter worked on the edge 

information. Their framework performed better than other existing methods especially 

when liver and liver lesions had ambiguous boundaries. However, the framework was 

less effective in delineating small lesions and may require the incorporation of more 

spatial and contextual information to tackle the same. 

Bai et al. [99], proposed a hybrid framework that integrated DL and 
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conventional methods to segment lesions effectively. A 3D UNet was initially used to 

extract the liver region from the CT volume. The segmented liver image was then 

segregated into lesion candidates using a multi-scale superpixel segmentation 

method. Then, a 3D Fractal Residual network that combined fractal and residual 

structures identified the lesions from these lesion candidates. Finally, an active contour 

model was used for refining the lesion boundary. Although their complex algorithm 

outperformed a few existing methods, it had some limitations, for instance, the precise 

lesion contours could not be obtained. Besides, the algorithm was ineffective in 

discriminating between multiple adjacent lesions.   

In [100], a modified SegNet with a binary classification layer was used for lesion 

segmentation. A pitfall of their method was false positive detection. SegNet was 

originally proposed for scene understanding but is now increasingly being adopted for 

medical image segmentation applications. This trend may be due to their efficiency in 

terms of memory requirement, training time and accuracy. 

Nanda et al. [101] used a SegNet model for liver delineation, followed by a 

genetically optimized ANN network fed by LTEM features for initial lesion detection. 

The output of ANN was input to UNet for final lesion segmentation. They showed that 

UNet gives better results with limited dataset when compared to SegNet.   

In [102], two deep Encoder-Decoder CNNs (EDCNN) having network 

architecture similar to SegNet were employed for segmentation. The input images 

preprocessed through Hounsfield windowing and histogram equalization were applied 

to the first EDCNN for segmenting the liver. The lesion was delineated from the 

segmented liver by the second EDCNN. Nevertheless, the lesion segmentation 

accuracy achieved by the algorithm was not very high. 
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Patch-based CNN was used in [103] for liver lesion delineation. But, the 

conventional CNNs are less frequently used for segmentation due to their high 

computational complexity. Sun et al. [104] performed the automatic delineation of 

hepatic lesions from triphasic CECT images using multi-channel FCN. The network 

was trained using the different CT phases and the extracted features were finally fused 

in the high-level layers.  

It was observed that although most of the DL based segmentation techniques 

delineated the larger lesions well, they were not as effective for the small lesions. The 

downsampling and upsampling in the DL models may be causing loss of important 

details from the small lesion images, which already have less voxels, making it difficult 

to accurately classify the voxels corresponding to these lesions. Unlike, the 

conventional segmentation methods, the DL methods require training the model, have 

higher computational complexity and are mostly automatic. 

4.2 DL based hepatic CAD systems 

The reviewed hepatic DL-CAD systems, derived their workflow from the general 

pipeline: preprocessing, liver and liver lesion segmentation, feature extraction and 

classification. It was noted that in some of the papers both conventional as well as DL 

methods were used to implement the pipeline. Others, mostly relied on DL methods. 

The following subsections discuss the methods employed at the various stages of the 

DL-CAD system. 

4.2.1 Preprocessing  

The preprocessing operations in DL-CAD systems were largely limited to 

resizing the input images to a dimension suitable for the respective DL model. For 

example, Yasaka et al. [63], resized the input images from 500Χ500 to 70Χ70 pixels to 
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decrease the memory requirement and execution time. But, it usually results in loss of 

crucial details which can adversely impact the accuracy of the DL-CAD system. To 

address this issue, in [19,20] Discrete Wavelet Transform (DWT), Singular Value 

Decomposition (SVD) and perceptual hash function were applied to downsample the 

input CT images while retaining their salient features. They achieved high accuracy 

with 32Χ32 size images downsampled through this approach.  

 The typical image processing based preprocessing operations applied in 

conventional CAD systems were rarely used here, barring a few exceptions. For 

instance, in [17], median filtering and histogram equalization were performed on the 

input CT images. Multi-temporal fusion of ART and PV phase CT images and 

decorrelation stretching were adopted in [105]. These operations improved the 

segmentation and classification accuracies of the DL-CAD system. 

4.2.2 Segmentation 

The strategies adopted for liver lesion segmentation in DL-CAD are mostly 

reminiscent of those used by their conventional counterparts. In [17], liver lesion was 

segmented hierarchically using SegNet and UNet. Besides, to reduce the 

computational complexity of the framework, the hyperparameters of the DL models 

were optimized through Artificial Bee Colony (ABC) algorithm. In [50], a variant of 

FCN-8s was adopted for semantic segmentation of liver and lesion. They reported that 

their network achieved good segmentation accuracy and required lesser training time 

compared to UNet. But, a pitfall was that it produced noise spots in some cases. FCN 

was also used for lesion detection/segmentation in [52, 47].  

Some researchers, as mentioned earlier, relied on conventional segmentation 

techniques. In [105], region growing and region merging were used for lesion 
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segmentation. Liang et al. [37], applied an interactive random walk-based 

segmentation technique to segment FLLs. In [106], only the liver was delineated and 

iterative probabilistic atlas model was used for the purpose. When conventional 

methods are used, the researcher needs to put in a lot of effort to come up with an 

effective segmentation algorithm. In that sense, the incorporation of DL algorithm 

reduces human effort but at the cost of high computational complexity. 

The liver lesions were manually segmented in [31,36]. Unlike conventional CAD 

systems, some DL-CAD systems [19–21] refrained from performing any type of 

segmentation. In such DL-CAD systems, the preprocessed input abdominal CT 

images were directly given to the feature extraction stage. This greatly reduces the 

computational complexity of the DL-CAD system. Besides, such systems have 

demonstrated excellent classification accuracies.  

4.2.3 Feature extraction and classification 

The different CNN models were investigated by the researchers for feature 

extraction and classification. In [17], LeNet-5 model optimized by the ABC algorithm 

was used for liver cancer diagnosis. The optimization technique aided in reducing the 

computation time and enhancing the performance of the model. In [50], a modified 

version of VGG-11 was used for characterizing and classifying HCC into three types 

namely, diffuse, nodular and massive. The CNN classifier was also compared with 

ANN and SVM classifiers trained with gray level features and it was found that on an 

average the CNN classifier outperformed the conventional classifiers. In [63], a CNN 

comprising six convolutional layers, three max pooling layers and three FC layers was 

used for characterizing and classifying FLLs. The authors reported low sensitivity for 

certain lesions.  
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In [36], the effectiveness of ResNet and AlexNet CNN models in differentiating 

four FLLs (Cyst, FNH, HCC and HEM) was compared and it was found that ResNet 

showed better performance. Other CAD systems that used CNN and its derivatives for 

feature extraction and classification were [31,47].    

The DL-CAD systems discussed so far extracted only the high level features 

through CNN. These features, however, cannot capture the local and global details 

from the image comprehensively. Besides, they cannot represent the temporal 

enhancement patterns. Hence, Liang et al. [37], proposed a framework to address 

these issues. ResNet with global and local pathways (ResGL Net) fed with two inputs 

namely, Region Of Interest (ROI) and patches corresponding to healthy tissues and 

FLLs was used to extract the local and global features from each phase. In addition, a 

Bi-Directional Long Short-Term Memory (BD-LSTM) was used to capture the 

enhancement patterns across the multiphase CT images. Since LSTM is a Recurrent 

NN which deals with sequential data efficiently, it was explored by other researchers 

as well.  

In [21], a three stage framework was proposed in which, first, an AlexNet based 

CNN was used for extracting the feature vector from the input CT image. Then, the 

dimension of the feature vector was reduced and relevant features preserved using a 

one-dimensional DWT. The LSTM classifier then categorized the lesions into benign 

and malignant, based on these features. However, the CAD system cannot identify the 

specific type of the lesion.   

As mentioned earlier, in some of the DL-CAD systems, conventional ML 

algorithms were used for classification. For example, in [19] extreme learning machine 

classifier trained with CNN features was employed. Likewise, SVM was used in [37, 
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41] and ANN in [20] for lesion categorization. These DL-CAD systems based on ML 

classifiers trained with CNN features, have shown promising results in lesion 

classification.  

4.2.4 Other issues 

The main challenge with the DL technology is the requirement of a huge 

amount of annotated data. A large dataset can help alleviate overfitting and improve 

the generalizability of the DL model. In this regard, various strategies were adopted by 

the researchers. Data augmentation approaches which artificially increase the number 

of images, was one of the most prominent strategies. Data augmentation by applying 

transformations like flip, rotation, scale, translation and so on, on the existing data was 

the most commonly used approach. It was adopted in [19,20,47,52,63]. Although this 

approach can increase the size of the dataset, it cannot generate images of diverse 

lesions. The synthesized lesion images will only contain patterns present in the original 

images from which they were derived. Another more versatile alternative is to 

synthesize liver lesion images using Generative Adversarial Networks (GAN).  In [31], 

Deep Convolutional GAN (DCGAN) was used to synthesize three types of FLLs 

namely, cysts, MET and HEM. They used both GAN generated images as well as the 

images produced by transformations to train the DL classifier. The use of GAN 

enlarged their dataset, improved its variability and also enhanced the performance of 

the CAD system. 

Transfer learning/fine-tuning is another technique adopted to handle the issue 

of insufficient training data. This approach eliminates the need to train the NN from 

scratch.  Wang et al. [36], used transfer learning and reported good classification 

accuracy with a small dataset. They adopted a 50-layer ResNet pre-trained with 
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ImageNet and fine-tuned with annotated medical images. AlexNet, GoogLeNet and 

VGGNet are the other pre-trained networks used in the reviewed literature. Some 

researchers have employed both transfer learning and data augmentation techniques 

to improve the performance of the CAD system.             

For validation and testing both hold-out [17,20,36,50,105] and CV [19, 21, 63, 

52] techniques were used. It can be seen that many researchers used CV technique, 

although it further increases the training time of DL models, perhaps, to avoid 

overfitting. Table 8 summarizes the DL-CAD systems in terms of techniques adopted 

and performance. 

Table 8. DL approaches for liver lesion classification. 

Although a few papers that dealt with DL based segmentation, had used public 

databases, it was observed that most researchers used datasets from their 

collaborating hospitals, making it difficult to assess the efficiency of the systems from a 

generic point of view. The existing public databases have limited images, are less 

diverse and are suitable for segmentation evaluation only.   

5. Discussion and research gaps 

The number of patients with liver diseases is increasing day by day, which is 

overburdening the radiologists due to the enormous volume of medical images to be 

analyzed. Hence, the incorporation of CAD systems as an assisting tool for 

radiologists is essential. However, the CAD systems developed so far have various 

limitations that have to be overcome to render them suitable in a clinical environment. 

These shortcomings are discussed below. 

To begin with, for the CAD system to be suitable for clinical practice, it should 

be able to analyze the images acquired in all the phases as the details of some of the 
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lesions may be visible only in certain phases. But only selected phases were 

considered in most of the published literature. In addition, powerful techniques to 

capture the dynamic enhancement patterns quantitatively in the different CT phases 

have not been developed. Few recent studies have explored this aspect, but more 

comprehensive features have to be discovered. 

As mentioned before, some authors have chosen to work only on NECT 

images, due to the detrimental reactions caused during the acquisition of CECT 

images (especially for diabetes and kidney patients). Such CAD systems have to focus 

intensively on preprocessing techniques to make an accurate diagnosis. The work in 

[42] has shown encouraging results. However, such CAD systems have mainly relied 

on manual segmentation, which is a tedious task and it also makes the output 

sensitive to the ROI selected. Hence developing automated/semi-automated methods 

for segmenting lesions from NECT images is an area open to research.   

Another important aspect is to focus on developing simpler and computationally 

efficient algorithms as the volume of CT data to be processed by the CAD system is 

already high. Instead of the hierarchical strategy, the lesions can be delineated directly 

from the abdominal CT image to reduce the computational complexity to some extent. 

A few researchers of conventional CAD systems have come up with such approaches, 

but they are mainly semi-automatic and not very effective. Some researchers have 

performed only liver segmentation and achieved satisfactory classification results. Both 

these CAD systems can be further investigated for clinical feasibility. 

In conventional CAD systems, considerable research is being done to fully 

automate the segmentation process. However, the shape and appearance of liver and 

liver lesions are highly variable, hence it is not practical to develop a completely 
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automatic segmentation algorithm. Segmentation methods that can interactively 

correct the segmentation errors should be developed. The work in [10] demonstrated 

such an approach, but the number of such interactions must be optimized.  

Recent studies have focused on DL algorithms for segmentation. The DL 

methods are largely robust to noise and poor contrast. Thus eliminating the need for 

major preprocessing operations. The DL approach can also enable complete 

automation of the segmentation process. But they may further augment the 

computational complexity of the CAD systems. Hence approaches to optimize the 

same have to be explored.      

Another critical issue in CAD system development (especially conventional 

CAD) is selecting the appropriate features that characterize the different classes of 

liver lesions accurately. The efficacy of various handcrafted features (viz. GLCM, 

LTEM etc) have been investigated by different researchers. However, the most 

discriminating features of the specific lesions have not been discovered so far. In the 

DL-CAD systems, the DL models extract the hidden complex patterns automatically 

from the input and provide superior diagnosis. Moreover, non-experts with little domain 

knowledge can also develop these systems since the features need not be explicitly 

chosen.          

Despite the various advantages that the DL-CAD systems offer compared to 

the conventional CAD systems, they have many downsides. Due to their black-box like 

characteristics, it is extremely difficult to interpret the DL models which is very 

essential in medical applications. Although some strategies have been developed to 

address this issue, they have not been used in the reviewed literature. Hence, in case 

of errors such as misdiagnosis, debugging becomes difficult as the user has little 
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control over the operations within the DL models.  Other issues are the need for highly 

powerful processing systems, huge volume of annotated data, long training time and 

computational complexity. The conventional CAD systems do not face these issues. 

Since both conventional and DL approaches have their own merits and demerits, more 

research should be directed towards developing hybrid CAD systems that leverage the 

strengths of the two approaches, instead of relying on only one of them. Such systems 

will be versatile, transparent, accurate and fast. 

Hepatic CAD systems based on unsupervised, semi-supervised and 

reinforcement learning have not been researched so far, to the best of our knowledge. 

These CAD systems can be useful in situations where largescale datasets are 

available, but annotating them is a tedious task. Moreover, such CAD systems may be 

more efficient and accurate than their supervised learning counterparts. 

Other areas that can be investigated to develop advanced systems include 

integrating essential clinical features of hepatic pathologies along with radiological 

features. Another area of research could be incorporating multimodal image fusion into 

the CAD system to improve diagnosis.  

A point that needs to be reiterated is that a large public database dedicated to 

liver diseases especially FLLs should be constructed. The existing public datasets 

have limited annotated CT images. Hence, private hospital datasets were used in most 

of the reviewed literature. As a result, it is difficult to compare the performances of the 

CAD systems. Efforts should be made in this regard, to facilitate quality research in 

liver disease diagnosis.  

The initial hepatic CAD systems were based on manual lesion segmentation, 

handcrafted features and ML technology. As research progressed in the related fields, 
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better segmentation, feature extraction and ML algorithms were developed, which 

paved the way for improved CAD systems. More recently, the incorporation of the DL 

technology has brought about a sea change in hepatic CAD system development, 

especially with respect to segmentation and feature extraction stages. Nevertheless, 

further research is needed, to make affordable CAD systems that are accurate, 

reliable, efficient, robust and clinically viable. 

6. Conclusion 

This paper discusses the various approaches used for preprocessing, 

segmentation, feature extraction and classification of hepatic abnormalities, mainly 

benign and malignant lesions reported in conventional and DL based CAD systems. 

The methods used for liver lesion segmentation have also been discussed. The 

purpose of a CAD system is to support a radiologist in the decision-making process by 

diagnosing the abnormalities accurately and hence giving a second opinion. To be of 

practical value, they should be able to detect the lesions that may be missed by a 

radiologist. Even though much research has been done in the last two decades, there 

is still scope for more research as robust CAD systems that provide high accuracy, 

high processing speed and a reasonable level of automation, suitable for clinical 

practice have to be developed. 
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B M N ABN HCC HEM MET CC HA FNH Cyst CIRR ABS LC References 

√ √             [12–21] 
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  √  √          [25–28] 

  √ √           [29,30] 

     √ √    √    [31,32] 

  √  √ √     √    [33–35] 

    √ √    √ √    [36,37] 

  √  √       √   [10] 

    √  √        [38] 

    √ √ √        [39] 

√ √ √            [40,41] 

  √  √ √ √    √  √  [42] 

  √  √   √    √   [43] 

  √        √ √  √ [44] 

  √   √     √   √ [45] 

    √ √  √ √      [46] 

      √    √    [47] 

     √ √    √    [48] 

    √          [49–51] 

      √        [52] 

       Table 1. Categories considered for classification in the reviewed CAD systems. 
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FLL Radiographic features References 

NECT CECT 

Cyst Well-defined lesions of water attenuation that do not enhance after administration of contrast 

material. 

[56,57] 

HEM Hypo- or isodense to liver parenchyma. Discontinuous peripheral nodular enhancement 

in the ART phase with progressive centripetal 

filling-in in the PV and DLY phases. 

[57,58] 

FNH Isodense or minimally hypodense mass 

of homogeneous density, a central scar 

of low density seen in 30% of cases. 

Homogeneously enhances in ART phase, central 

scar remains hypodense. Attenuation difference 

between liver and lesion decreases and 

becomes isodense in PV and DLY phases. 

[4,56,58,59] 

 

METS Can be of variable density depending on 

size, vascularity, etc. Majority are 

hypodense with Hounsfield Unit (HU) 

values between that of water and normal 

liver. 

Best seen during the portal phase. [56] 

HCC Mostly hypo- or isodense. Enhances avidly in the ART phase, becomes 

iso/hypodense with the liver parenchyma in the 

PV phase and shows most lesions as hypodense 

compared with surrounding liver in the DLY 

phase. 

[4] 

Table 2. Typical radiographic features of common liver lesions from other studies. 
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Phases References 

NECT ART PV DLY EQ  

√ √ √   [12, 36–38, 43, 60] 

√     [14,15,18,33–35,42] 

  √   [31, 32, 48, 50,61] 

√ √ √ √  [10, 45, 62] 

√ √  √  [63] 

 √ √  √ [51] 

 √ √ √  [49] 

 √    [27] 

Table 3. Summary of the CT phases employed in the reviewed papers. 
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Liver segmentation Lesion 

segmentation 

Inferences References 

Thresholding + Morphological 

erosion + Automatic region growing 

FCM • Determining the exact liver 

intensity range is difficult.  

• All types of peripheral lesions 

may not get detected due to initial 

thresholding.  

[66] 

Semiautomatic region growing Nil • Interactively corrects 

segmentation errors.  

• User interventions required may 

be large, when errors are present 

in many slices.   

[10] 

NFB feature bit map + region 

growing + deformable contour model  

Nil • Complex algorithm. 

• May result in incorrect 

classification results if liver is 

incorrectly segmented, since no 

lesion segmentation.  

[24] 

Neutrosophic domain + FCM 

clustering 

Nil • Neutrosophy gives good 

segmentation   results for images 

with blurry edges. 

[29] 

Neutrosophic domain + Adaptive 

thresholding + Morphological 

operations + Watershed algorithm 

Fast FCM • Over-segmentation reduced. 

• Good results with non-uniform CT 

images. 

[65] 

Kirsch filter + Concave and Convex 

points identification + mean shift 

algorithm + FCM 

FCM • Liver and lesions with vague 

boundaries segmented well. 

[70] 

Histogram analysis + thresholding + 

morphological operations  

FCM + automated 

region growing 

• May miss peripheral lesions. [18] 

Nil Seeded region • Seed selection is difficult.  [69] 

Jo
urn

al 
Pre-

pro
of



growing • Segmented output sensitive to 

selected seed point 

Histogram analysis + thresholding + 

morphological operations 

FCM • May miss peripheral lesions. 

• Same morphological operations 

may not suit all segmented 

results. 

[13, 30, 38, 

46]     

FCM Region growing • High computation time. [77] 

Marker controlled watershed 

algorithm 

GMM • May not be effective when 

adjacent organs have similar 

intensities. 

[39] 

Nil Semiautomatic 

region growing 

• Delineated lesion output sensitive 

to user input. 

• Requires user to identify the 

lesion and input seed point. 

[12] 

Adaptive thresholding Adaptive 

thresholding 

• Computationally inexpensive. 

• Less robust. 

[30] 

FCM + Grey wolf optimization  Fast FCM clustering • The local minima convergence 

issue of FCM addressed. 

[16] 

Nil DRLSE + Region 

growing 

• Can delineate lesions of complex 

topology.  

[45] 

Table 4.  Summary of the liver and/or lesion segmentation methods used in the reviewed literature. 
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Methods Pros Cons 

Thresholding Produces good results for homogeneous 

images with high contrast. 

Selection of threshold is difficult. Not suitable for 

images with peripheral liver lesions. 

Region growing Simple concept. Regions with same 

properties are segmented well.  

Sensitive to noise and seed point. 

Watershed Automatic and fast algorithm. Does not produce good results when the boundary 

between organs are blurred. 

FCM  Robust algorithm. Comparatively better 

results with noisy images.   

High computational complexity. 

Active contour 

models 

Dynamically adapt in their search for 

minimal energy.  

Require initial contour to be defined and higher 

computation time. 

Table 5.  Pros and cons of the prominent segmentation algorithms. 
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Technique References 

GLCM  [13, 16, 18, 22–26, 29, 33-35, 39, 40, 42–45, 51] 

Histogram based [10, 18, 26, 33, 34, 40, 42, 43, 45, 51] 

Run length Matrix [43] 

Local binary pattern [27, 40] 

Fractal based [18, 24, 33, 34, 43] 

LTEM [33, 34, 43, 51] 

Wavelet based [13, 18, 22, 46] 

Contourlet based [22]                   

SFTA1 [30, 40]                    

FDCT2 based [13] 

GLDM [33, 34] 

LBP + Histogram Fourier Transform based [38] 

Auto-covariance features [14, 15] 

Table 6. Summary of the commonly used feature extraction techniques. 

 

 

 

 

 

                                                           
1 Segmentation based Fractal Texture Analysis 
2 Fast Discrete Curvelet Transform 
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References Sample size Extracted features 

& feature 

selection 

technique 

Classifier Performance 

[10] N:14, CIRR:12,  

HCC:14  

Histogram & 

temporal features 

Cascade of LR & 

SVM 

Accuracy (LR):92.5%,  

Accuracy (SVM):86.9% 

[39] HEM:75, HCC:75, 

MET:75 

Statistical, 

geometric & GLCM 

based 

DNN Accuracy:99.4% 

Sensitivity:100% 

Specificity:99.1% 

[29] N:30, ABN:30 GLCM based SVM Accuracy:95% 

[38] HCC:63, MET:60 LBP Histogram 

Fourier features 

C45 Accuracy:95% 

 

[25] N:10, HCC:10 GLCM based NB Accuracy:95% 

[42] N:105, HCC:134, 

HEM:110, Cyst:103, 

MET:77, ABS:105 

GLCM based SVM Accuracy:93% 

[40] N:62, B:392, M:308 GLCM Based Ensemble Accuracy:100% 

[12] B:49, M:22 Texture, shape & 

Kinetic curve 

features + 

Backward 

elimination 

LR  Accuracy:81.7% 

Sensitivity:81.8% 

Specificity:81.6% 

[27] N:125, HCC:77 LBP, Legendre 

moments + 

Sequential 

algorithm 

Euclidean distance 

classifier 

Accuracy:96.2% 
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[22] HCC:150, HEM:150 Contourlet texture 

features + PCA 

PNN Accuracy:96.7% 

Sensitivity:97.3% 

Specificity:96% 

[23] HEM:50, HCC:50 GLCM based Pulse coupled NN Accuracy:87% 

Sensitivity:86 

Specificity:88% 

[30] N:20, ABN:60 SFTA features SVM Accuracy: 92.5% 

[18] B: 247, M:240 Shape, texture & 

boundary features. 

Ensemble Accuracy: 98.6% 

[45] N:81, Cyst:38, 

LC:38, HEM:39 

FOS, GLCM, Time 

series + PCA 

Cascaded SVM 

classifiers 

Accuracy:99.5%  

(N & ABN), 

97.4% (cyst & non-cyst), 

93.5% (LC & HEM) 

[16] 62 CT images GLCM based SVM Accuracy: 97% 

[26] N:231, HCC:464 FOS & GLCM 

based 

SVM Accuracy: 86.4% 

[43] N:537, CIRR:433, 

CC:222, HCC:319 

LTEM, RLM, COM, 

GLDM, Fractal and 

FOS based 

AdaBoostM1+J48 in 

Weka 

Accuracy ≈ 90% 

[14] B:84, M:80 Auto-covariance 

coefficients 

SVM Accuracy= 81.7% 

Sensitivity=75% 

Specificity=88% 

[33] N:76, Cyst:19, 

HEM:28, HCC:24 

FOS, GLCM, 

GLDM, LTEM, 

Fractal based 

Ensemble Accuracy = 85% 
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[24] Hepatoma:20, 

HEM:10 

GLCM based PNN Accuracy: 83% 

[28] N: 250, HCC:200 Zernike moment 

features 

Nearest mean 

classifier 

Accuracy(N):98.3% 

Accuracy(HCC):90.7% 

[35] N:76, Cyst: 19, 

HEM:28, 

HCC:24 

GLCM based Cascaded NN 

classifiers 

Accuracy: 97% 

[46] Hepatoma: 40, 

HEM:30 

Wavelet based PNN Accuracy: 90.2% 

[34] N:76, Cyst: 19, 

HEM:28, 

HCC:24 

FOS, GLCM, 

GLDM, LTEM, 

Fractal based + GA 

Ensemble Accuracy: 90.6% 

[78] Cyst: 45, MET: 45, 

HEM: 18, HCC: 11, 

FNH: 5, ABS: 3, 

Neuroendocrine 

neoplasms: 3, Fat: 1, 

Laceration: 1 

Matching metric SVM  Accuracy < 90% 

SFTA: Segmentation based Fractal Texture Analysis, FOS: First Order Statistics, RLM: Run Length Matrix, COM: Co-

Occurrence Matrices, FDCT: Fast Discrete Curvelet Transform, DNN: Deep NN. 

Table 7. Overview of the CAD systems in terms of sample size, feature extraction & selection techniques, 

classification methods and performance. 

Sample size Liver/lesion 

segmentation 

Feature extraction & 

classification 

Performance References 

B:100, M:100 Nil CNN + ELM Accuracy: 97.3% [19] 

N: 227, Cyst:293, Liver: Iterative probabilistic DADRN Accuracy: 86.9% [106] 
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FNH: 130, HCC: 

251, HEM: 190 

atlas model 

Cyst: 119, FNH: 71, 

HCC: 103, HEM: 95 

Manual ResNet Accuracy: 91.2% [36] 

B: 56, M:56 Nil CNN+DWT+LSTM Accuracy: 99.1% [21] 

Diffuse HCC:46, 

Nodular HCC: 43, 

Massive HCC:76 

FCN CNN Accuracy: 98 % [50] 

Cyst: 110, FNH:114, 

HCC: 132, HEM:124 

Random walk-based  

interactive segmentation 

ResGLNet + BD-LSTM 

+ SVM 

Accuracy: 90.9% [37] 

Cyst: 53, MET: 64, 

HEM: 65 

Manual CNN  Sensitivity: 85.7 %  

Specificity: 92.4% 

[31] 

Cyst: 115, MET:115 FCN InceptionV3 + residual 

connections  

Accuracy: 0.96 

 

[47] 

ELM: Extreme Learning Machine, DADRN: Dual Attention Dilated Residual Network 

Table 8. DL approaches for liver lesion classification. 
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Fig. 1. A pictorial description of the FLLs considered in the reviewed papers. 
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(a) HEM (Portal Venous) 

 
 
 
 
 
 
 
 

(b) FNH (Arterial) 

 
 
 
 
 
 
 
 

         (c) HA (Arterial) 

 
 
 
 
 
 
 
 

(d) HCC (Arterial) 

 
 
 
 
 
 
 
 

         (e) CC (Arterial) 
 

     (f) MET (Portal Venous) 

 
(g) Cirrhosis (Portal Venous) 

 
 
 
 
 
 
 
 

(h) Cyst (Portal Venous) 

 
 
 
 
 
 
 
 
 (i) Abscess (Portal Venous) 

 

Fig. 2. Abdominal CT images indicating the liver anomalies along with the phase [11] (arrows were not 

shown in original images. For sake of explanation we have included them). 
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Fig. 3. Visualization of common liver lesions (on axial CT) in NECT, ART, PV and DLY phases (adapted from [55]). 
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Fig. 4. Block diagram of a conventional CAD system comprising of preprocessing, liver and lesion segmentation, 

feature extraction, feature selection and classification stages. 
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Fig. 5. A pictorial overview showing the workflow adopted and prominent techniques used in the reviewed 

conventional CAD systems. 

 

(a) Vague boundary between organs [11]. 

 

(b) Change in liver morphology due to the lesions[11]. 

 

(c)  Peripheral hepatic lesion [11]. 

 

(d) Division of liver into two lobes [54]. 
 

 

 

 

 

Fig. 6. CT images showing difficulties associated with liver segmentation [11] (labels were not shown in the original 

images. For the sake of explanation we have included them) 
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Highlights 

• A comprehensive review of conventional and deep learning based CAD systems for liver 

lesion diagnosis. 

• Provides an overview of the various technical as well as medical aspects associated with 

hepatic lesion diagnosis. 

• The articles published in the last two decades were analyzed in the review. 

• The various limitations of the current systems along with directions for future research 

are outlined. 
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